Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 211
1.
Genes (Basel) ; 15(4)2024 Apr 16.
Article En | MEDLINE | ID: mdl-38674431

BACKGROUND: Neurofilament proteins have been implicated to be altered in amyotrophic lateral sclerosis (ALS). The objectives of this study were to assess the diagnostic and prognostic utility of neurofilaments in ALS. METHODS: Studies were conducted in electronic databases (PubMed/MEDLINE, Embase, Web of Science, and Cochrane CENTRAL) from inception to 17 August 2023, and investigated neurofilament light (NfL) or phosphorylated neurofilament heavy chain (pNfH) in ALS. The study design, enrolment criteria, neurofilament concentrations, test accuracy, relationship between neurofilaments in cerebrospinal fluid (CSF) and blood, and clinical outcome were recorded. The protocol was registered with PROSPERO, CRD42022376939. RESULTS: Sixty studies with 8801 participants were included. Both NfL and pNfH measured in CSF showed high sensitivity and specificity in distinguishing ALS from disease mimics. Both NfL and pNfH measured in CSF correlated with their corresponding levels in blood (plasma or serum); however, there were stronger correlations between CSF NfL and blood NfL. NfL measured in blood exhibited high sensitivity and specificity in distinguishing ALS from controls. Both higher levels of NfL and pNfH either measured in blood or CSF were correlated with more severe symptoms as assessed by the ALS Functional Rating Scale Revised score and with a faster disease progression rate; however, only blood NfL levels were associated with shorter survival. DISCUSSION: Both NfL and pNfH measured in CSF or blood show high diagnostic utility and association with ALS functional scores and disease progression, while CSF NfL correlates strongly with blood (either plasma or serum) and is also associated with survival, supporting its use in clinical diagnostics and prognosis. Future work must be conducted in a prospective manner with standardized bio-specimen collection methods and analytical platforms, further improvement in immunoassays for quantification of pNfH in blood, and the identification of cut-offs across the ALS spectrum and controls.


Amyotrophic Lateral Sclerosis , Neurofilament Proteins , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/blood , Amyotrophic Lateral Sclerosis/diagnosis , Amyotrophic Lateral Sclerosis/cerebrospinal fluid , Humans , Neurofilament Proteins/blood , Neurofilament Proteins/cerebrospinal fluid , Biomarkers/blood , Biomarkers/cerebrospinal fluid , Intermediate Filaments/metabolism , Intermediate Filaments/genetics , Prognosis
2.
J Cell Physiol ; 239(5): e31254, 2024 May.
Article En | MEDLINE | ID: mdl-38501553

Desmin, the most abundant intermediate filament in cardiomyocytes, plays a key role in maintaining cardiomyocyte structure by interconnecting intracellular organelles, and facilitating cardiomyocyte interactions with the extracellular matrix and neighboring cardiomyocytes. As a consequence, mutations in the desmin gene (DES) can lead to desminopathies, a group of diseases characterized by variable and often severe cardiomyopathies along with skeletal muscle disorders. The basic desmin intermediate filament structure is composed of four segments separated by linkers that further assemble into dimers, tetramers and eventually unit-length filaments that compact radially to give the final form of the filament. Each step in this process is critical for proper filament formation and allow specific interactions within the cell. Mutations within the desmin gene can disrupt filament formation, as seen by aggregate formation, and thus have severe cardiac and skeletal outcomes, depending on the locus of the mutation. The focus of this review is to outline the cardiac molecular consequences of mutations located in the C-terminal part of segment 2B. This region is crucial for ensuring proper desmin filament formation and is a known hotspot for mutations that significantly impact cardiac function.


Cardiomyopathies , Desmin , Mutation , Desmin/genetics , Desmin/metabolism , Humans , Cardiomyopathies/genetics , Cardiomyopathies/metabolism , Cardiomyopathies/pathology , Mutation/genetics , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Intermediate Filaments/genetics , Intermediate Filaments/metabolism , Animals
3.
PLoS Genet ; 20(2): e1011138, 2024 Feb.
Article En | MEDLINE | ID: mdl-38315730

The presence of large protein inclusions is a hallmark of neurodegeneration, and yet the precise molecular factors that contribute to their formation remain poorly understood. Screens using aggregation-prone proteins have commonly relied on downstream toxicity as a readout rather than the direct formation of aggregates. Here, we combined a genome-wide CRISPR knockout screen with Pulse Shape Analysis, a FACS-based method for inclusion detection, to identify direct modifiers of TDP-43 aggregation in human cells. Our screen revealed both canonical and novel proteostasis genes, and unearthed SRRD, a poorly characterized protein, as a top regulator of protein inclusion formation. APEX biotin labeling reveals that SRRD resides in proximity to proteins that are involved in the formation and breakage of disulfide bonds and to intermediate filaments, suggesting a role in regulation of the spatial dynamics of the intermediate filament network. Indeed, loss of SRRD results in aberrant intermediate filament fibrils and the impaired formation of aggresomes, including blunted vimentin cage structure, during proteotoxic stress. Interestingly, SRRD also localizes to aggresomes and unfolded proteins, and rescues proteotoxicity in yeast whereby its N-terminal low complexity domain is sufficient to induce this affect. Altogether this suggests an unanticipated and broad role for SRRD in cytoskeletal organization and cellular proteostasis.


Clustered Regularly Interspaced Short Palindromic Repeats , Intermediate Filaments , Humans , Intermediate Filaments/genetics , Intermediate Filaments/metabolism , Cytoskeleton/genetics , Inclusion Bodies/genetics , Inclusion Bodies/metabolism
4.
J Neurosci ; 43(22): 4174-4189, 2023 05 31.
Article En | MEDLINE | ID: mdl-37137704

Research on pathogenic mechanisms underlying giant axonal neuropathy (GAN), a disease caused by a deficiency of gigaxonin, has been hindered by the lack of appropriate animal models exhibiting substantial symptoms and large neurofilament (NF) swellings, a hallmark of the human disease. It is well established that intermediate filament (IF) proteins are substrates for gigaxonin-mediated degradation. However, it has remained unknown to what extent NF accumulations contribute to GAN pathogenesis. Here, we report the generation of a new mouse model of GAN that is based on crossing transgenic mice overexpressing peripherin (Prph) with mice knockout for Gan The Gan-/-;TgPer mice developed early onset sensory-motor deficits along with IF accumulations made up of NF proteins and of Prph, causing swelling of spinal neurons at a young age. Abundant inclusion bodies composed of disorganized IFs were also detected in the brain of Gan-/-;TgPer mice. At 12 months of age, the Gan-/-;TgPer mice exhibited cognitive deficits as well as severe sensory and motor defects. The disease was associated with neuroinflammation and substantial loss of cortical neurons and spinal neurons. Giant axons (≥160 µm2) enlarged by disorganized IFs, a hallmark of GAN disease, were also detected in dorsal and ventral roots of the Gan-/-;TgPer mice. These results, obtained with both sexes, support the view that the disorganization of IFs can drive some neurodegenerative changes caused by gigaxonin deficiency. This new mouse model should be useful to investigate the pathogenic changes associated with GAN disease and for drug testing.SIGNIFICANCE STATEMENT Research on pathogenic mechanism and treatment of GAN has been hampered by the lack of animal models exhibiting overt phenotypes and substantial neurofilament disorganization, a hallmark of the disease. Moreover, it remains unknown whether neurologic defects associated with gigaxonin deficiency in GAN are because of neurofilament disorganization as gigaxonin may also act on other protein substrates to mediate their degradation. This study reports the generation of a new mouse model of GAN based on overexpression of Prph in the context of targeted disruption of gigaxonin gene. The results support the view that neurofilament disorganization may contribute to neurodegenerative changes in GAN disease. The Gan-/-;TgPer mice provide a unique animal model of GAN for drug testing.


Giant Axonal Neuropathy , Male , Female , Mice , Humans , Animals , Giant Axonal Neuropathy/genetics , Giant Axonal Neuropathy/pathology , Giant Axonal Neuropathy/therapy , Intermediate Filaments/genetics , Intermediate Filaments/metabolism , Intermediate Filaments/pathology , Cytoskeletal Proteins/genetics , Intermediate Filament Proteins/genetics , Intermediate Filament Proteins/metabolism , Phenotype , Mice, Transgenic
5.
Cells ; 11(23)2022 Dec 02.
Article En | MEDLINE | ID: mdl-36497166

Desmin is the major intermediate filament protein of all three muscle cell types, and connects different cell organelles and multi-protein complexes such as the cardiac desmosomes. Several pathogenic mutations in the DES gene cause different skeletal and cardiac myopathies. However, the significance of the majority of DES missense variants is currently unknown, since functional data are lacking. To determine whether desmin missense mutations within the highly conserved 1A coil domain cause a filament assembly defect, we generated a set of variants with unknown significance and systematically analyzed the filament assembly using confocal microscopy in transfected SW-13, H9c2 cells and cardiomyocytes derived from induced pluripotent stem cells. We found that mutations in the N-terminal part of the 1A coil domain affect filament assembly, leading to cytoplasmic desmin aggregation. In contrast, mutant desmin in the C-terminal part of the 1A coil domain forms filamentous structures comparable to wild-type desmin. Our findings suggest that the N-terminal part of the 1A coil domain is a hot spot for pathogenic desmin mutations, which affect desmin filament assembly. This study may have relevance for the genetic counselling of patients carrying variants in the 1A coil domain of the DES gene.


Desmin , Intermediate Filaments , Muscular Diseases , Humans , Base Sequence , Cytoskeleton/metabolism , Desmin/genetics , Intermediate Filaments/genetics , Intermediate Filaments/metabolism , Muscular Diseases/pathology , Animals , Mice , Cell Line
6.
Cell Reprogram ; 24(4): 165-174, 2022 08.
Article En | MEDLINE | ID: mdl-35749708

The vimentin (encoded by VIM) is one of the 70 human intermediate filaments (IFs), building highly dynamic and cell-type-specific web networks in the cytoplasm. Vim-/- mice exhibit process defects associated with cell differentiation, which can have implications for understanding cancer and disease. This review showed recent reports from studies that unveiled vimentin intermediate filaments (VIFs) as an essential component of the cytoskeleton, followed by a description of vimentin's physiological functions and process reports in VIF signaling pathway and gene network studies. The main focus of the discussion is on vital signaling pathways associated with how VIF coordinates invasion cells and migration. The current research will open up multiple processes to research the function of VIF and other IF proteins in cellular and molecular biology, and they will lead to essential insights into different VIF levels for the invasive metastatic cancer cells. Enrich GO databases used Gene Ontology and Pathway Enrichment Analysis. Estimation with STRING online was to predict the functional and molecular interactions of proteins-protein with Cytoscape analysis to search and select the master genes. Using Cytoscape and STRING analysis, we presented eight genes, RhoA, Smad3, Akt1, Cdk2, Rock1, Rock2, Mapk1, and Mapk8, as the essential protein-protein interaction with vimentin involved in the invasion.


Cytoskeleton , Intermediate Filaments , Animals , Cytoplasm/metabolism , Cytoskeleton/metabolism , Humans , Intermediate Filaments/genetics , Intermediate Filaments/metabolism , Mice , Signal Transduction , Vimentin/genetics , Vimentin/metabolism , rho-Associated Kinases/metabolism
7.
Genes Dev ; 36(7-8): 391-407, 2022 04 01.
Article En | MEDLINE | ID: mdl-35487686

More than 27 yr ago, the vimentin knockout (Vim-/- ) mouse was reported to develop and reproduce without an obvious phenotype, implying that this major cytoskeletal protein was nonessential. Subsequently, comprehensive and careful analyses have revealed numerous phenotypes in Vim-/- mice and their organs, tissues, and cells, frequently reflecting altered responses in the recovery of tissues following various insults or injuries. These findings have been supported by cell-based experiments demonstrating that vimentin intermediate filaments (IFs) play a critical role in regulating cell mechanics and are required to coordinate mechanosensing, transduction, signaling pathways, motility, and inflammatory responses. This review highlights the essential functions of vimentin IFs revealed from studies of Vim-/- mice and cells derived from them.


Intermediate Filaments , Vimentin/metabolism , Animals , Cell Physiological Phenomena , Intermediate Filaments/genetics , Intermediate Filaments/metabolism , Mice , Vimentin/genetics
8.
J Recept Signal Transduct Res ; 42(5): 512-520, 2022 Oct.
Article En | MEDLINE | ID: mdl-35296221

The Vimentin intermediate filament (VIF) is an essential cytoskeleton component. It shows dynamically changing expression patterns throughout various phases of the differentiation process, suggesting that the protein is physiologically important. Vimentin's essential functions have recently been clear, so Vimentin-deficient of animals was described as a change of morphology and signaling pathway. Recent research has discovered many vital roles for Vimentin that were previously unknown. VIF emerges as an organizer of many essential proteins involved in movement and cell signaling. The highly dynamic and complicated phosphorylation of VIF seems to be a regulator mechanism for various activities. Changes in IF expression patterns are often linked with cancer progression, especially those leading to enhanced invasion and cellular migration. This review will discuss the function of Vimentin intermediate filaments in normal cell physiology, cell adhesion structures, cell shape, and signaling pathways. The genes interaction and gene network linked with Vimentin will be discussed in more studies. However, research aimed at understanding the function of Vimentin in different signaling cascades and gene interactions might offer novel methods for creating therapeutic medicines. Enrichr GEO datasets used gene ontology (GO) and pathway enrichment analyses. STRING online was used to predict the functional connections of proteins-proteins, followed by Cytoscape analysis to find the master genes. Cytoscape and STRING research revealed that eight genes, Fas, Casp8, Casp6, Fadd, Ripk1, Des, Tnnc2, and Tnnt3, were required for protein-protein interactions with Vimentin genes involved in cell differentiation.


Cytoskeleton , Intermediate Filaments , Animals , Cell Differentiation/genetics , Cytoskeleton/genetics , Cytoskeleton/metabolism , Intermediate Filaments/genetics , Intermediate Filaments/metabolism , Signal Transduction/genetics , Vimentin/genetics , Vimentin/metabolism
9.
Int J Mol Sci ; 23(1)2022 Jan 04.
Article En | MEDLINE | ID: mdl-35008956

Plakin repeat domains (PRDs) are globular modules that mediate the interaction of plakin proteins with the intermediate filament (IF) cytoskeleton. These associations are vital for maintaining tissue integrity in cardiac muscle and epithelial tissues. PRDs are subject to mutations that give rise to cardiomyopathies such as arrhythmogenic right ventricular cardiomyopathy, characterised by ventricular arrhythmias and associated with an increased risk of sudden heart failure, and skin blistering diseases. Herein, we have examined the functional and structural effects of 12 disease-linked missense mutations, identified from the human gene mutation database, on the PRDs of the desmosomal protein desmoplakin. Five mutations (G2056R and E2193K in PRD-A, G2338R and G2375R in PRD-B and G2647D in PRD-C) rendered their respective PRD proteins either fully or partially insoluble following expression in bacterial cells. Each of the residues affected are conserved across plakin family members, inferring a crucial role in maintaining the structural integrity of the PRD. In transfected HeLa cells, the mutation G2375R adversely affected the targeting of a desmoplakin C-terminal construct containing all three PRDs to vimentin IFs. The deletion of PRD-B and PRD-C from the construct compromised its targeting to vimentin. Bioinformatic and structural modelling approaches provided multiple mechanisms by which the disease-causing mutations could potentially destabilise PRD structure and compromise cytoskeletal linkages. Overall, our data highlight potential molecular mechanisms underlying pathogenic missense mutations and could pave the way for informing novel curative interventions targeting cardiomyopathies and skin blistering disorders.


Desmoplakins/chemistry , Desmoplakins/genetics , Desmoplakins/metabolism , Models, Molecular , Mutation, Missense , Protein Conformation , Protein Interaction Domains and Motifs/genetics , Alleles , Amino Acid Substitution , Fluorescent Antibody Technique , Genetic Association Studies , Genetic Predisposition to Disease , HeLa Cells , Humans , Intermediate Filaments/chemistry , Intermediate Filaments/genetics , Intermediate Filaments/metabolism , Phenotype , Recombinant Proteins , Solubility , Structure-Activity Relationship
10.
J Neurol Neurosurg Psychiatry ; 93(1): 48-56, 2022 01.
Article En | MEDLINE | ID: mdl-34518334

OBJECTIVE: Neurofilaments are the major scaffolding proteins for the neuronal cytoskeleton, and variants in NEFH have recently been described to cause axonal Charcot-Marie-Tooth disease type 2CC (CMT2CC). METHODS: In this large observational study, we present phenotype-genotype correlations on 30 affected and 3 asymptomatic mutation carriers from eight families. RESULTS: The majority of patients presented in adulthood with motor-predominant and lower limb-predominant symptoms and the average age of onset was 31.0±15.1 years. A prominent feature was the development of proximal weakness early in the course of the disease. The disease progressed rapidly, unlike other Charcot-Marie-Tooth disease (CMT) subtypes, and half of the patients (53%) needed to use a wheelchair on average 24.1 years after symptom onset. Furthermore, 40% of patients had evidence of early ankle plantarflexion weakness, a feature which is observed in only a handful of CMT subtypes. Neurophysiological studies and MRI of the lower limbs confirmed the presence of a non-length-dependent neuropathy in the majority of patients.All families harboured heterozygous frameshift variants in the last exon of NEFH, resulting in a reading frameshift to an alternate open reading frame and the translation of approximately 42 additional amino acids from the 3' untranslated region (3'-UTR). CONCLUSIONS: This phenotype-genotype study highlights the unusual phenotype of CMT2CC, which is more akin to spinal muscular atrophy rather than classic CMT. Furthermore, the study will enable more informative discussions on the natural history of the disease and will aid in NEFH variant interpretation in the context of the disease's unique molecular genetics.


Charcot-Marie-Tooth Disease/genetics , Intermediate Filaments/genetics , Adult , Exons , Female , Genotype , Heterozygote , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Mutation , Neurofilament Proteins/genetics , Neurons , Pedigree , Phenotype , Sural Nerve , Young Adult
11.
Sci Rep ; 11(1): 22128, 2021 11 11.
Article En | MEDLINE | ID: mdl-34764380

Delayed diagnosis and misdiagnosis are frequent in people with amyotrophic lateral sclerosis (ALS), the most common form of motor neuron disease (MND). Neurofilament light chain (NFL) and phosphorylated neurofilament heavy chain (pNFH) are elevated in ALS patients. We retrospectively quantified cerebrospinal fluid (CSF) NFL, CSF pNFH and plasma NFL in stored samples that were collected at the diagnostic work-up of ALS patients (n = 234), ALS mimics (n = 44) and controls (n = 9). We assessed the diagnostic performance, prognostication value and relationship to the site of onset and genotype. CSF NFL, CSF pNFH and plasma NFL levels were significantly increased in ALS patients compared to patients with neuropathies & myelopathies, patients with myopathies and controls. Furthermore, CSF pNFH and plasma NFL levels were significantly higher in ALS patients than in patients with other MNDs. Bulbar onset ALS patients had significantly higher plasma NFL levels than spinal onset ALS patients. ALS patients with C9orf72HRE mutations had significantly higher plasma NFL levels than patients with SOD1 mutations. Survival was negatively correlated with all three biomarkers. Receiver operating characteristics showed the highest area under the curve for CSF pNFH for differentiating ALS from ALS mimics and for plasma NFL for estimating ALS short and long survival. All three biomarkers have diagnostic value in differentiating ALS from clinically relevant ALS mimics. Plasma NFL levels can be used to differentiate between clinical and genetic ALS subgroups.


Amyotrophic Lateral Sclerosis/diagnosis , Amyotrophic Lateral Sclerosis/metabolism , Intermediate Filaments/metabolism , Aged , Biomarkers/metabolism , Diagnosis, Differential , Disease Progression , Female , Genotype , Humans , Intermediate Filaments/genetics , Male , Middle Aged , Motor Neuron Disease/diagnosis , Motor Neuron Disease/metabolism , Mutation/genetics , ROC Curve , Retrospective Studies
12.
Biomolecules ; 11(10)2021 09 22.
Article En | MEDLINE | ID: mdl-34680030

Bacterial flagella are cell surface protein appendages that are critical for motility and pathogenesis. Flagellar filaments are tubular structures constructed from thousands of copies of the protein flagellin, or FliC, arranged in helical fashion. Individual unfolded FliC subunits traverse the filament pore and are folded and sorted into place with the assistance of the flagellar capping protein complex, an oligomer of the FliD protein. The FliD filament cap is a stool-like structure, with its D2 and D3 domains forming a flat head region, and its D1 domain leg-like structures extending perpendicularly from the head towards the inner core of the filament. Here, using an approach combining bacterial genetics, motility assays, electron microscopy and molecular modeling, we define, in numerous Gram-negative bacteria, which regions of FliD are critical for interaction with FliC subunits and result in the formation of functional flagella. Our data indicate that the D1 domain of FliD is its sole functionally important domain, and that its flexible coiled coil region comprised of helices at its extreme N- and C-termini controls compatibility with the FliC filament. FliD sequences from different bacterial species in the head region are well tolerated. Additionally, head domains can be replaced by small peptides and larger head domains from different species and still produce functional flagella.


Bacterial Proteins/genetics , Escherichia coli Proteins/genetics , Flagellin/genetics , Membrane Proteins/genetics , Bacterial Proteins/ultrastructure , Escherichia coli/genetics , Escherichia coli/pathogenicity , Escherichia coli/ultrastructure , Escherichia coli Proteins/ultrastructure , Flagella/chemistry , Flagella/genetics , Flagella/ultrastructure , Flagellin/ultrastructure , Gram-Negative Bacteria/genetics , Gram-Negative Bacteria/pathogenicity , Intermediate Filaments/genetics , Microscopy, Electron , Models, Molecular , Protein Domains/genetics , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/pathogenicity , Pseudomonas aeruginosa/ultrastructure
13.
J Struct Biol ; 213(4): 107793, 2021 12.
Article En | MEDLINE | ID: mdl-34481988

On the basis of sequence homology with mammalian α-keratins, and on the criteria that the coiled-coil segments and central linker in the rod domain of these molecules must have conserved lengths if they are to assemble into viable intermediate filaments, a total of 28 Type I and Type II keratin intermediate filament chains (KIF) have been identified from the genome of the European common wall lizard (Podarcis muralis). Using the same criteria this number may be compared to 33 found here in the green anole lizard (Anole carolinensis) and 25 in the tuatara (Sphenodon punctatus). The Type I and Type II KIF genes in the wall lizard fall in clusters on chromosomes 13 and 2 respectively. Although some differences occur in the terminal domains in the KIF chains of the two lizards and tuatara, the similarities between key indicator residues - cysteine, glycine and proline - are significant. The terminal domains of the KIF chains in the wall lizard also contain sequence repeats commonly based on glycine and large apolar residues and would permit the fine tuning of physical properties when incorporated within the intermediate filaments. The H1 domain in the Type II chain is conserved across the lizards, tuatara and mammals, and has been related to its role in assembly at the 2-4 molecule level. A KIF-like chain (K80) with an extensive tail domain comprised of multiple tandem repeats has been identified as having a potential filament-crosslinking role.


Cytoskeleton/metabolism , Intermediate Filaments/genetics , Keratins/genetics , Lizards/genetics , Amino Acid Sequence , Animals , Cysteine/chemistry , Cysteine/genetics , Cysteine/metabolism , Epidermis/metabolism , Epithelium/metabolism , Glycine/chemistry , Glycine/genetics , Glycine/metabolism , Intermediate Filaments/chemistry , Intermediate Filaments/metabolism , Keratins/chemistry , Keratins/metabolism , Lizards/classification , Lizards/metabolism , Multigene Family/genetics , Proline/chemistry , Proline/genetics , Proline/metabolism , Sequence Homology, Amino Acid , Species Specificity
14.
Elife ; 102021 06 21.
Article En | MEDLINE | ID: mdl-34152269

The transcription factor Snai1, a well-known regulator of epithelial-to-mesenchymal transition, has been implicated in early cardiac morphogenesis as well as in cardiac valve formation. However, a role for Snai1 in regulating other aspects of cardiac morphogenesis has not been reported. Using genetic, transcriptomic, and chimeric analyses in zebrafish, we find that Snai1b is required in cardiomyocytes for myocardial wall integrity. Loss of snai1b increases the frequency of cardiomyocyte extrusion away from the cardiac lumen. Extruding cardiomyocytes exhibit increased actomyosin contractility basally as revealed by enrichment of p-myosin and α-catenin epitope α-18, as well as disrupted intercellular junctions. Transcriptomic analysis of wild-type and snai1b mutant hearts revealed the dysregulation of intermediate filament genes, including desmin b (desmb) upregulation. Cardiomyocyte-specific desmb overexpression caused increased cardiomyocyte extrusion, recapitulating the snai1b mutant phenotype. Altogether, these results indicate that Snai1 maintains the integrity of the myocardial epithelium, at least in part by repressing desmb expression.


Gene Expression Regulation , Heart/physiology , Intermediate Filaments/genetics , Snail Family Transcription Factors/genetics , Zebrafish Proteins/genetics , Zebrafish/physiology , Animals , Myocardium/metabolism , Snail Family Transcription Factors/metabolism , Zebrafish/genetics , Zebrafish Proteins/metabolism
15.
Cytoskeleton (Hoboken) ; 78(3): 97-110, 2021 03.
Article En | MEDLINE | ID: mdl-33993654

Charcot-Marie-Tooth disease (CMT) is one of the most common inherited neurological disorders and can be caused by mutations in over 100 different genes. One of the causative genes is NEFL on chromosome 8 which encodes neurofilament light protein (NEFL), one of five proteins that co-assemble to form neurofilaments. At least 34 different CMT-causing mutations in NEFL have been reported which span the head, rod, and tail domains of the protein. The majority of these mutations are inherited dominantly, but some are inherited recessively. The resulting disease is classified variably in clinical reports based on electrodiagnostic studies as either axonal (type 2; CMT2E), demyelinating (type 1; CMT1F), or a form intermediate between the two (dominant intermediate; DI-CMTG). In this article, we first present a brief introduction to CMT and neurofilaments. We then collate and analyze the data from the clinical literature on the disease classification, age of onset and electrodiagnostic test results for the various mutations. We find that mutations in the head, rod, and tail domains can all cause disease with early onset and profound neurological impairment, with a trend toward greater severity for head domain mutations. We also find that the disease classification does not correlate with specific mutation or domain. In fact, different individuals with the same mutation can be classified as having axonal, demyelinating, or dominant intermediate forms of the disease. This suggests that the classification of the disease as CMT2E, CMT1F or DI-CMTG has more to do with variable disease presentation than to differences in the underlying disease mechanism, which is most likely primarily axonal in all cases.


Charcot-Marie-Tooth Disease , Charcot-Marie-Tooth Disease/genetics , Humans , Intermediate Filaments/genetics , Mutation , Neurofilament Proteins/genetics
16.
FEBS Open Bio ; 11(5): 1299-1312, 2021 05.
Article En | MEDLINE | ID: mdl-33605551

In human hair follicles, the hair-forming cells express 16 hair keratin genes depending on the differentiation stages. K85 and K35 are the first hair keratins expressed in cortical cells at the early stage of the differentiation. Two types of mutations in the gene encoding K85 are associated with ectodermal dysplasia of hair and nail type. Here, we transfected cultured SW-13 cells with human K85 and K35 genes and characterized filament formation. The K85-K35 pair formed short filaments in the cytoplasm, which gradually elongated and became thicker and entangled around the nucleus, indicating that K85-K35 promotes lateral association of short intermediate filaments (IFs) into bundles but cannot form IF networks in the cytoplasm. Of the K85 mutations related to ectodermal dysplasia of hair and nail type, a two-nucleotide (C1448 T1449 ) deletion (delCT) in the protein tail domain of K85 interfered with the K85-K35 filament formation and gave only aggregates, whereas a missense mutation (233A>G) that replaces Arg78 with His (R78H) in the head domain of K85 did not interfere with the filament formation. Transfection of cultured MCF-7 cells with all the hair keratin gene combinations, K85-K35, K85(R78H)-K35 and K85(delCT)-K35, as well as the individual hair keratin genes, formed well-developed cytoplasmic IF networks, probably by incorporating into the endogenous cytokeratin IF networks. Thus, the unique de novo assembly properties of the K85-K35 pair might play a key role in the early stage of hair formation.


Cyclin-Dependent Kinase 8/genetics , Keratins, Hair-Specific/genetics , Keratins, Type II/genetics , Amino Acid Sequence/genetics , Cell Line , Cyclin-Dependent Kinase 8/metabolism , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , Hair/metabolism , Humans , Intermediate Filaments/genetics , Keratins/genetics , Keratins/metabolism , Keratins, Hair-Specific/metabolism , Keratins, Type II/metabolism , MCF-7 Cells , Transfection
17.
Sci Rep ; 11(1): 2001, 2021 01 21.
Article En | MEDLINE | ID: mdl-33479417

Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) is a complicated maternally inherited disorder lacking of sensitive and specific biomarkers. The objective of this study was to investigate the serum neurofilament light chain (NfL) as a novel biomarker of neurological dysfunction in MELAS. Patients with different status of MELAS were enrolled in this study. The Mini-Mental State Examination (MMSE) was given to the participants to evaluate cognition status. Multiple functional MRI was performed on the participants. Blood samples were collected and the serum NfL concentrations were determined by the single-molecule array technology (Simoa). This study enrolled 23 patients with MELAS, 15 people in the acute attack phase of MELAS and 10 people in the remission phase, including 2 patients in both acute attack and remission phase. Sixteen healthy controls (HCs) were also enrolled. Serum NfL level increased significantly in patients with MELAS. Serum NfL level in the acute attack group (146.73 [120.91-411.31] pg/ml, median [IQR]) was higher than in the remission group (40.31 [19.54-151.05] pg/ml, median [IQR]) and HCs group (7.70 [6.13-9.78] pg/ml, median [IQR]) (p < 0.05). The level of NfL in the remission phase group was higher than in HCs group (p < 0.05). A negative correlation was found between the serum NfL level and MMSE (p = 0.006, r = -0.650). The NfL concentration correlated positively with stroke-like lesion volume in the brain (r = 0.740, p < 0.001). Serum NfL may serve as a novel biomarker for the neurological dysfunction in MELAS patients.


Biomarkers/blood , Brain/diagnostic imaging , MELAS Syndrome/blood , Neurofilament Proteins/blood , Adolescent , Adult , Brain/pathology , Female , Humans , Intermediate Filaments/genetics , MELAS Syndrome/diagnostic imaging , MELAS Syndrome/genetics , MELAS Syndrome/pathology , Magnetic Resonance Imaging , Male , Maternal Inheritance/genetics , Middle Aged , Young Adult
18.
Curr Opin Cell Biol ; 68: 181-191, 2021 02.
Article En | MEDLINE | ID: mdl-33454158

In the last two years, neurofilaments (NFs) have become one of the most blazing topics in clinical neuroscience. NFs are major cytoskeletal constituents of neurons, can be detected in body fluids, and have recently emerged as universal biomarkers of neuronal injury and neurological diseases. This review will examine the evolving landscape of NFs, from their specific cellular functions within neurons to their broad clinical value as biomarkers. Particular attention will be given to the dynamic nature of the NF network and its novel roles in microtubule regulation, neurotransmission, and nanomedicine. Building from the initial evidence of causative mutations in NF genes in Charcot-Marie-Tooth diseases, the latest advances at the frontiers of basic and clinical sciences have expanded the scope and relevance of NFs for human health remarkably and have poised to fuel innovation in cell biology and neuroscience.


Intermediate Filaments/metabolism , Neurons/metabolism , Animals , Biomarkers/analysis , Charcot-Marie-Tooth Disease/metabolism , Charcot-Marie-Tooth Disease/pathology , Cytoskeleton/chemistry , Cytoskeleton/metabolism , Humans , Intermediate Filaments/chemistry , Intermediate Filaments/genetics , Mutation , Neurons/chemistry , Neurons/pathology
19.
FASEB J ; 35(1): e21182, 2021 01.
Article En | MEDLINE | ID: mdl-33205514

During the last decades intermediate filaments (IFs) have emerged as important regulators of cellular signaling events, ascribing IFs with functions beyond the structural support they provide. The organ and developmental stage-specific expression of IFs regulate cell differentiation within developing or remodeling tissues. Lack of IFs causes perturbed stem cell differentiation in vasculature, intestine, nervous system, and mammary gland, in transgenic mouse models. The aberrant cell fate decisions are caused by deregulation of different stem cell signaling pathways, such as Notch, Wnt, YAP/TAZ, and TGFß. Mutations in genes coding for IFs cause an array of different diseases, many related to stem cell dysfunction, but the molecular mechanisms remain unresolved. Here, we provide a comprehensive overview of how IFs interact with and regulate the activity, localization and function of different signaling proteins in stem cells, and how the assembly state and PTM profile of IFs may affect these processes. Identifying when, where and how IFs and cell signaling congregate, will expand our understanding of IF-linked stem cell dysfunction during development and disease.


Cell Differentiation , Intermediate Filament Proteins/metabolism , Intermediate Filaments/metabolism , Mutation , Stem Cells/metabolism , Wnt Signaling Pathway , Animals , Humans , Intermediate Filament Proteins/genetics , Intermediate Filaments/genetics , Intermediate Filaments/pathology , Stem Cells/pathology
20.
J Neurotrauma ; 38(12): 1679-1688, 2021 06 15.
Article En | MEDLINE | ID: mdl-33191850

Traumatic brain injury (TBI) is an established risk factor for neurodegenerative disorders and dementias. Epigenetic modifications, such as DNA methylation, may alter the expression of genes without altering the DNA sequence in response to environmental factors. We hypothesized that DNA methylation changes may occur in the injured human brain and be implicated in the neurodegenerative aftermath of TBI. The DNA methylation status of genes related to neurodegeneration; for example, amyloid beta precursor protein (APP), microtubule associated protein tau (MAPT), neurofilament heavy (NEFH), neurofilament medium (NEFM), and neurofilament light (NEFL), was analyzed in fresh, surgically resected human brain tissue from 17 severe TBI patients and compared with brain biopsy samples from 19 patients with idiopathic normal pressure hydrocephalus (iNPH). We also performed an epigenome-wide association study (EWAS) comparing TBI patients with iNPH controls. Thirty-eight CpG sites in the APP, MAPT, NEFH, and NEFL genes were differentially methylated by TBI. Among the top 20 differentially methylated CpG sites, 11 were in the APP gene. In addition, the EWAS evaluating 828,888 CpG sites revealed 308 differentially methylated CpG sites in genes related to cellular/anatomical structure development, cell differentiation, and anatomical morphogenesis. These preliminary findings provide the first evidence of an altered DNA methylome in the injured human brain, and may have implications for the neurodegenerative disorders associated with TBI.


Amyloid beta-Protein Precursor/genetics , Brain Injuries, Traumatic/genetics , DNA Methylation/genetics , Intermediate Filaments/genetics , tau Proteins/genetics , Adult , Aged , Female , Gene Expression Regulation/genetics , Humans , Male , Middle Aged
...